(本小题满分12分)在中,角 的对边分别为,,,且 .(1)求锐角的大小; (2)若,求面积的最大值.
已知椭圆:的离心率为,右焦点为,右顶点在圆:上. (Ⅰ)求椭圆和圆的方程; (Ⅱ)已知过点的直线与椭圆交于另一点,与圆交于另一点.请判断是否存在斜率不为0的直线,使点恰好为线段的中点,若存在,求出直线的方程;若不存在,说明理由.
已知函数,其中为常数. (Ⅰ)若函数是区间上的增函数,求实数的取值范围; (Ⅱ)若在时恒成立,求实数的取值范围.
如图,在四棱锥中,底面是菱形,,且侧面平面,点是棱的中点. (Ⅰ)求证:平面; (Ⅱ)求证:; (Ⅲ)若,求证:平面平面.
根据以往的成绩记录,甲、乙两名队员射击击中目标靶的环数的频率分布情况如图所示 (Ⅰ)求上图中的值; (Ⅱ)甲队员进行一次射击,求命中环数大于7环的概率(频率当作概率使用); (Ⅲ)由上图判断甲、乙两名队员中,哪一名队员的射击成绩更稳定(结论不需证明).
函数. (Ⅰ)求的值; (Ⅱ)求函数的最小正周期及其图象的所有对称轴的方程.