过抛物线 E : x 2 = 2 p y p > 0 的焦点 F 作斜率分别为 k 1 , k 2 的两条不同的直线 l 1 , l 2 ,且 k 1 + k 2 = 2 , l 1 与 E 相交于点 A , B , l 2 与 E 相交于点 C , D .以 A B , C D 为直径的圆 M ,圆 N ( M , N 为圆心)的公共弦所在的直线记为 l . (I)若 k 1 > 0 , k 2 > 0 ,证明; F M ⇀ · F N ⇀ < 2 p 2 ; (II)若点 M 到直线 l 的距离的最小值为 7 5 5 ,求抛物线 E 的方程.
如图,在三棱锥中, ,,为线段的中点. (Ⅰ)求证:; (Ⅱ)求二面角的余弦值.
已知数列是首项为,公比为的等比数列.数列满足,是的前项和. (Ⅰ)求; (Ⅱ)设同时满足条件:①;②(,是与无关的常数)的无穷数列叫“特界”数列.判断(1)中的数列是否为“特界”数列,并说明理由.
已知函数的最小正周期为,最大值为3. (Ⅰ)求和常数的值; (Ⅱ)求函数的单调递增区间.
已知函数 (Ⅰ)证明:若则 ; (Ⅱ)如果对于任意恒成立,求的最大值.
如图,在轴右侧的动圆⊙与⊙:外切,并与轴相切. (Ⅰ)求动圆的圆心的轨迹的方程; (Ⅱ)过点作⊙:的两条切线,分别交轴于两点,设中点为.求的取值范围.