在一次青年歌手演唱比赛中,评分办法采用五位评委现场打分,每位选手的晟后得分为去掉最高分、最低分后的平均数.评委给1号选手的打分是:9.5分,9.3分,9.8分,8.8分,9.4分.(1)求l号选手的最后得分;(2)节目组为了增加的节目观赏性,设置了一个亮分环节:主持人在公布评委打分之前,选手随机请两位评委率先亮出他的打分.请用列表法或画树状图的方法求“l号选手随机 请两位评委亮分,刚好一个是最高分、一个是最低分”的概率.
如图,在矩形 ABCD 中, AB = 2 , AD = 1 ,点 E 为边 CD 上的一点(与 C 、 D 不重合),四边形 ABCE 关于直线 AE 的对称图形为四边形 ANME ,延长 ME 交 AB 于点 P ,记四边形 PADE 的面积为 S .
(1)若 DE = 3 3 ,求 S 的值;
(2)设 DE = x ,求 S 关于 x 的函数表达式.
有一块矩形地块 ABCD , AB = 20 米, BC = 30 米.为美观,拟种植不同的花卉,如图所示,将矩形 ABCD 分割成四个等腰梯形及一个矩形,其中梯形的高相等,均为 x 米.现决定在等腰梯形 AEHD 和 BCGF 中种植甲种花卉;在等腰梯形 ABFE 和 CDHG 中种植乙种花卉;在矩形 EFGH 中种植丙种花卉.甲、乙、丙三种花卉的种植成本分别为20元 / 米 2 、60元 / 米 2 、40元 / 米 2 ,设三种花卉的种植总成本为 y 元.
(1)当 x = 5 时,求种植总成本 y ;
(2)求种植总成本 y 与 x 的函数表达式,并写出自变量 x 的取值范围;
(3)若甲、乙两种花卉的种植面积之差不超过120平方米,求三种花卉的最低种植总成本.
如图, DB 过 ⊙ O 的圆心,交 ⊙ O 于点 A 、 B , DC 是 ⊙ O 的切线,点 C 是切点,已知 ∠ D = 30 ° , DC = 3 .
(1)求证: ΔBOC ∽ ΔBCD ;
(2)求 ΔBCD 的周长.
如图,已知 ΔABC 是锐角三角形 ( AC < AB ) .
(1)请在图1中用无刻度的直尺和圆规作图:作直线 l ,使 l 上的各点到 B 、 C 两点的距离相等;设直线 l 与 AB 、 BC 分别交于点 M 、 N ,作一个圆,使得圆心 O 在线段 MN 上,且与边 AB 、 BC 相切;(不写作法,保留作图痕迹)
(2)在(1)的条件下,若 BM = 5 3 , BC = 2 ,则 ⊙ O 的半径为 .
小李2014年参加工作,每年年底都把本年度收入减去支出后的余额存入银行(存款利息记入收入),2014年底到2019年底,小李的银行存款余额变化情况如下表所示:(单位:万元)
年份
2014年
2015年
2016年
2017年
2018年
2019年
收入
3
8
9
a
14
18
支出
1
4
5
6
c
存款余额
2
10
15
b
34
(1)表格中 a = ;
(2)请把下面的条形统计图补充完整;(画图后标注相应的数据)
(3)请问小李在哪一年的支出最多?支出了多少万元?