某校抽样调查了部分初三学生的升学意向,调查结果有三种情况:A.考上三星级高中;B.考取四星级高中;C.进入职业技术学校.教务处将调查数据进行了整理,绘制了如下不完整的统计图.请根据相关信息,解答下列问题:(1)本次活动共调查了学生 名;(2)求出图②中B区域圆心角的度数;(3)若该校初三学生共有600名,请用样本估计该校学生中目标“考取四星级高中”的人数.
在数学学习和研究中经常需要总结运用数学思想方法。如类比、转化、从特殊到一般等思想方法,如下是一个案例,请补充完整。题目:如图1,在平行四边形ABCD中,点E是BC的中点,点F在线段AE上,BF的延长线交射线CD于点G,若,求的值。(1)尝试探究在图1中,过点E作EH∥AB交BG于点H,则易求的值是 ,的值是 ,从而确定的值是 。(2)类比延伸如图2,在原题的条件下,若,则的值是 。(用含m的代数式表示),写出解答过程。(3)拓展迁移如图3,在梯形ABCD中,DC∥AB,点E是BC延长线上的一点,AE和BD相交于F,若,(a>0,b>0),则的值是 。(用含a、b的代数式表示)写出解答过程。
某校为了深化课堂教学改革,现要配备一批A、B两种型号的小白板,经与销售商洽谈,搭成协议,购买一块A型比一块B型贵20元,且购5块A型和4块B型共需820元。(1)求购买一块A型、B型各需多少元?(2)根据该校实际情况,需购A、B两种型号共60块,要求总价不超5300元,且A型数量多于总数的,请通过计算,求出该校有几种购买方案?(3)在(2)的条件下,学校为了节约开支,至少需花多少钱采购?
如图,已知⊙O的直径AB与弦CD相交于点E, AB⊥CD,⊙O的切线BF与弦AD的延长线相交于点F. (1)求证:CD∥ BF; (2)若⊙O的半径为5, cos∠BCD=,求线段AD的长.
如图,测量金沙湖BC的长度,现在距地面1500m高的A处的飞机上,测得正前方湖的两端B、C两点处的俯角分别为60°和45°,求湖长BC.(参考数据:)
已知如图,在平行四边形中,延长AD到E,延长CB到F,使得DE=BF,连接EF,分别交AB、CD于点M、N,连结AN、CM。(1)求证:△DEN≌△BFM(2)试判断四边形ANCM的形状,并说明理由。