本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分6分.已知两动圆和(),把它们的公共点的轨迹记为曲线,若曲线与轴的正半轴的交点为,且曲线上的相异两点满足:.求曲线的方程;若的坐标为,求直线和轴的交点的坐标;证明直线恒经过一定点,并求此定点的坐标.
已知函数f(x)是定义域在R上的奇函数,当x>0时,f(x)=x2﹣2x.(1)求出函数f(x)在R上的解析式;(2)写出函数的单调区间.
已知集合M={x|x2﹣3x≤10},N={x|a+1≤x≤2a+1}.(1)若a=2,求M∩(∁RN);(2)若M∪N=M,求实数a的取值范围.
(1)若xlog32=1,试求4x+4﹣x的值;(2)计算:(2)﹣(﹣9.6)0﹣(3)+(1.5)﹣2+(×)4.
已知函数f(x)=x3+x.(1)判断函数f(x)的单调性与奇偶性,(不用证明结论).(2)若f(cosθ﹣m)+f(msinθ﹣2)<0对θ∈R恒成立,求实数m的取值范围.
已知向量=(cosα,sinα),=(cosβ,sinβ),|﹣|=.(1)求cos(α﹣β)的值;(2)若0<α<,﹣<β<0,且sinβ=﹣,求sinα.