已知椭圆的离心率为,右焦点为(,0),斜率为1的直线与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为P(-3,2).(1)求椭圆G的方程;(2)求的面积.
如图,在四棱锥中,底面为矩形,底面,、分别是、中点. (1)求证:平面; (2)求证:.
已知椭圆:,直线交椭圆于两点. (Ⅰ)求椭圆的焦点坐标及长轴长; (Ⅱ)求以线段为直径的圆的方程.
在平面直角坐标系中,已知点,动点在轴上的正射影为点,且满足直线. (Ⅰ)求动点M的轨迹C的方程; (Ⅱ)当时,求直线的方程.
已知椭圆上的点到左右两焦点的距离之和为,离心率为. (Ⅰ)求椭圆的方程; (Ⅱ)过右焦点的直线交椭圆于两点. (1)若轴上一点满足,求直线斜率的值; (2)是否存在这样的直线,使的最大值为(其中为坐标原点)?若存在,求直线方程;若不存在,说明理由.
设函数,若函数在处与直线相切, (1)求实数,的值; (2)求函数上的最大值.