本题共有2个小题,第(1)小题满分6分,第(2)小题满分8分.某油库的设计容量为30万吨,年初储量为10万吨,从年初起计划每月购进石油万吨,以满足区域内和区域外的需求,若区域内每月用石油1万吨,区域外前个月的需求量(万吨)与的函数关系为,并且前4个月,区域外的需求量为20万吨.(1)试写出第个月石油调出后,油库内储油量(万吨)与的函数关系式;(2)要使16个月内每月按计划购进石油之后,油库总能满足区域内和区域外的需求,且每月石油调出后,油库的石油剩余量不超过油库的容量,试确定的取值范围.
已知,,其中 (1)求证: 与互相垂直;(2)若与的长度相等,求的值(为非零的常数) .
(1)若函数,则_______________.(2)化简:=____________.
如图,ABCD是一块边长为100m的正方形地皮,其中AST是一半径为90m的扇形小山,其他部分都是平地.一开发商想在平地上建一个矩形停车场,使矩形的一个顶点P在弧ST上,相邻两边CQ,CR落在正方形的边BC,CD上,求矩形停车场PQCR的面积S的最大值和最小值(结果取整数).
)(如图,在平面直角坐标系xOy中,一单位圆的圆心的初始位置在(0, 1),此时圆上一点P的位置在(0, 0),圆在x轴上沿正向滚动。当圆滚动到圆心位于(2, 1)时,的坐标为______.(2)在矩形ABCD中,边AB、AD的长分别为2、1,若M、N分别是边BC、CD上的点,且满足,则的取值范围是________.
已知定义在实数集上的奇函数(、)过已知点.(Ⅰ)求函数的解析式;(Ⅱ)试证明函数在区间是增函数;若函数在区间(其中)也是增函数,求的最小值;(Ⅲ)试讨论这个函数的单调性,并求它的最大值、最小值,在给出的坐标系(见答题卡)中画出能体现主要特征的图简;(Ⅳ)求不等式的解集.