(本小题满分12分)下面的一组图形为某一四棱锥S-ABCD的侧面与底面。
(1)请画出四棱锥S-ABCD的示意图,是否存在一条侧棱垂直于底面?如果存在,请给出证明;如果不存在,请说明理由(2)若SA面ABCD,E为AB中点,求二面角E-SC-D的大小(3)求点D到面SEC的距离
某人乘车从A地到B地,所需时间(分钟)服从正态分布N(30,100),求此人在40分钟至50分钟到达目的地的概率.
某地位于甲、乙两条河流的交汇处,根据统计资料预测,今年汛期甲河流发生洪水的概率为0.25,乙河流发生洪水的概率为0.18(假设两河流发生洪水与否互不影响).现有一台大型设备正在该地工作,为了保护设备,施工部门提 出以下三种方案: 方案1:运走设备,此时需花费4 000元; 方案2:建一保护围墙,需花费1 000元,但围墙只能抵御一个河流发生的洪水,当两河流同时发生洪水时,设备仍将受损,损失约56 000元; 方案3:不采取措施,此时,当两河流都发生洪水时损失达60 000元,只有一条河流发生洪水时,损失为10 000元. (1)试求方案3中损失费(随机变量)的概率分布; (2)试比较哪一种方案好.
某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响.已知某学生选修甲而不选修乙和丙的概率为0.08,选修甲和乙而不选修丙的概率是0.12,至少选修一门课的概率是0.88,用表示该学生选修的课程门数和没有 选修的课程门数的乘积. (1)记“函数f(x)=x2+·x为R上的偶函数”为事件A,求事件A的概率; (2)求的概率分布和数学期望.
一个袋中装有若干个大小相同的黑球、白球和红球.已知从袋中任意摸出1个球,得到黑球的概率是;从袋中任意摸出2个球,至少得到1个白球的概率是.若袋中共有10个球,(1)求白球的个数;(2)从袋中任意摸出3个球,记得到白球的个数为,求随机变量的数学期望E().
)某篮球队与其他6支篮球队依次进行6场比赛,每场均决出胜负,设这支篮球队与其他篮球队比赛胜场的事件是独立的,并且胜场的概率是.(1)求这支篮球队首次胜场前已经负了两场的概率;(2)求这支篮球队在6场比赛中恰好胜了3场的概率;(3)求这支篮球队在6场比赛中胜场数的期望和方差.