已知函数,.(1)若,且存在互不相同的实数满足,求实数的取值范围;(2)若函数在上单调递增,求实数的取值范围.
如图AB为圆O直径,P为圆O外一点,过P点作PC⊥AB,垂是为C,PC交圆O于D点,PA交圆O于E点,BE交PC于F点。(I)求证:∠PFE=∠PAB;(II)求证:CD2=CF·CP.
已知函数(Ⅰ)当时, 求函数的单调增区间;(Ⅱ)求函数在区间上的最小值;(Ⅲ) 在(Ⅰ)的条件下,设,证明:.参考数据:.
平面内与两定点连线的斜率之积等于非零常数的点的轨迹,加上 两点,所成的曲线可以是圆,椭圆或双曲线.(Ⅰ)求曲线的方程,并讨论的形状与值的关系;(Ⅱ)当时,对应的曲线为;对给定的,对应的曲线为,若曲线的斜率为的切线与曲线相交于两点,且(为坐标原点),求曲线的方程.
如图,四棱锥P-ABCD中,底面ABCD是平行四边形,∠ACB=90°,平面PAD⊥平面ABCD,PA=BC=1,PD=AB=,E、F分别为线段PD和BC的中点.(Ⅰ) 求证:CE∥平面PAF;(Ⅱ)在线段BC上是否存在一点G,使得平面PAG和平面PGC所成二面角的大小为60°?若存在,试确定G的位置;若不存在,请说明理由.
生产A,B两种元件,其质量按测试指标划分为:指标大于或等于为正品,小于为次品.现随机抽取这两种元件各件进行检测,检测结果统计如下:
(Ⅰ)试分别估计元件A,元件B为正品的概率;(Ⅱ)生产一件元件A,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B,若是正品可盈利50元,若是次品则亏损10元.在(Ⅰ)的前提下,(ⅰ)记为生产1件元件A和1件元件B所得的总利润,求随机变量的分布列和数学期望;(ⅱ)求生产5件元件B所获得的利润不少于140元的概率.