(本小题满分14分) 如图,矩形中,,.,分别在线段和上,∥,将矩形沿折起.记折起后的矩形为,且平面平面.(Ⅰ)求证:∥平面;(Ⅱ)若,求证:;(Ⅲ)求四面体体积的最大值.
(本小题12分)如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°. (1)求证:AC⊥平面BDE; (2)求二面角FBED的余弦值.
(本小题12分)某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元。 (1)分别写出两类产品的收益与投资额的函数关系式; (2)该家庭现有20万元资金,全部用于理财投资,怎样分配资金才能获得最大收益?其最大收益为多少万元?
(本小题10分)已知函数的最大值为. (1)求函数的单调递增区间; (2)将的图象向左平移个单位,得到函数的图象,若方程=m在x∈上 有解,求实数m的取值范围.
(本小题满分10分)选修4~5:不等式选讲 设不等式-2<|x-1|-|x+2|<0的解集为M,a,b∈M. (1)证明:<; (2)比较|1-4ab|与2|a-b|的大小,并说明理由.
(本小题满分10分)选修4~4:坐标系与参数方程 在直角坐标系xOy中,直线l的参数方程为(t为参数)在极坐标系(与直角坐标系xOy取相同的长度单位。且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为 (Ⅰ)求圆C的直角坐标方程; (Ⅱ)设圆C与直线l交于点A,B.若点P的坐标为(1,2),求的最小值.