(本小题满分14分)如图1,在边长为的正方形中,,且,且,分别交于点,将该正方形沿折叠,使得与重合,构成图所示的三棱柱,在图中.(Ⅰ)求证:;(Ⅱ)求直线与平面所成角的正弦值;(Ⅲ)在底边上有一点,使得平面,求的值.
在△ABC中,中线长AM=2. (1)若=-2,求证:++=0; (2)若P为中线AM上的一个动点,求·(+)的最小值.
已知函数f(x)=2sincos+cos. (1)求函数f(x)的最小正周期及最值; (2)令g(x)=f,判断函数g(x)的奇偶性,并说明理由.
如图,某中学甲、乙两班共有25名学生报名参加了一项测试.这25位学生的考分编成的茎叶图,其中有一个数据因电脑操作员不小心删掉了(这里暂用x来表示),但他清楚地记得两班学生成绩的中位数相同. (1)求这两个班学生成绩的中位数及x的值; (2)如果将这些成绩分为“优秀”(得分在175分以上,包括175分)和“过关”,若学校再从这两个班获得“优秀”成绩的考生中选出3名代表学校参加比赛,求这3人中甲班至多有一人入选的概率.
已知 (1)化简; (2)若是第三象限角,且cos()=,求的值.
已知函数. (1)当时,求不等式的解集; (2)若不等式存在实数解,求实数的取值范围.