(本小题满分13分)在平面直角坐标系中,已知点,点B在直线:上运动,过点B与垂直的直线和线段AB的垂直平分线相交于点M.(1)求动点M的轨迹E的方程;(2)过(1)中轨迹E上的点P (1,2)作两条直线分别与轨迹E相交于,两点.试探究:当直线PC,PD的斜率存在且倾斜角互补时,直线CD的斜率是否为定值?若是,求出这个定值;若不是,说明理由.
已知,且,用分析法求证:.
观察以下各等式:,分析上述各式的共同特点,猜想出反映一般规律的等式,并对等式的正确性利用综合法作出证明.
设x=1和x=2是函数f(x)=x5+ax3+bx+1的两个极值点.(1)求a和b的值;(2)求f(x)的单调区间.
椭圆的两个焦点分别为,离心率。(1)求椭圆方程;(2)一条不与坐标轴平行的直线与椭圆交于不同的两点,且线段中点的横坐标为,求直线倾斜角的取值范围。
设函数的图象在点处的切线方程为.(1)求的值;(2)求函数的单调递增区间,并求函数在上的最大值和最小值。