在一个口袋中有四个完全相同的小球,把它们分别标号为1,2, 3,4.小明和小强采取了不同的摸取方法,分别是: 小明:随机抽取一个小球记下标号,然后放回,再随机地摸取一个小球,记下标号;小强:随机摸取一个小球记下标号,不放回,再随机地抽取一个小球,记下标号.用画树状图(或列表法)分别表示小明和小强摸球的所有可能出现的结果;分别求出小明和小强两次摸球的标号之和等于5的概率.
如图,在中,,是的中点,连接.,,是垂足.图中共有多少对全等三角形?请直接用“”符号把它们分别表示出来(不要求证明).
化简:
如图,一抛物线经过点A(−2,0),点B(0,4)和点C(4,0),该抛物线的顶点为D.(1)求该抛物线的函数关系式及顶点D坐标.(2)如图,若P为线段CD上的一个动点,过点P作PM⊥x轴于点M,求四边形PMAB的面积的最大值和此时点P的坐标.(3)过抛物线顶点D,作DE⊥x轴于E点,F(m,0)是x轴上一动点,若以BF为直径的圆与线段DE有公共点,求m的取值范围.
如图,点A(-10,0),B(-6,0),点C在y轴的正半轴上,∠CBO=45°,CD∥AB,∠CDA=90°.点P从点Q(8,0)出发,沿x轴向左以每秒1个单位长的速度向点A匀速运动,运动时间为t秒.(1)求点C的坐标.(2)当∠BCP=15°时,求t的值.(3)以PC为直径作圆,当该圆与四边形ABCD的边(或边所在的直线)相切时,求t的值.
某饰品店以20元/件的价格采购了一批今年新上市的饰品进行了为期30天的销售,销售结束后,得知日销售量P(件)与销售时间x(天)之间有如下关系:P=-2x+80(1≤x≤30);又知前20天的销售价格Q1(元/件)与销售时间x(天)之间有如下关系:Q1=x+30(1≤x≤20),后10天的销售价格Q2则稳定在45元/件.(1)试分别写出该商店前20天的日销售利润R1(元)和后10天的日销售利润R2(元)与销售时间x(天)之间的函数关系式;(2)请问在这30天的销售期中,哪一天的日销售利润最大?并求出这个最大利润值.(注:销售利润=销售收入-购进成本)