有一个不透明口袋,装有分别标有数字1,2,3,4的4个小球(小球除数字不同外,其余都相同),另有3张背面完全一样、正面分别写有数字1,2,3的卡片.小敏从口袋中任意摸出一个小球,小颖从这3张背面朝上的卡片中任意摸出一张,然后计算摸出的小球和卡片上的两个数的积.(1)请你用列表或画树状图的方法,求摸出的这两个数的积为6的概率;(2)小敏和小颖做游戏,她们约定:若这两个数的积为奇数,小敏赢;否则,小颖赢.你认为该游戏公平吗?为什么?如果不公平,请你修改游戏规则,使游戏公平.
(资阳)如图,在△ABC中,BC是以AB为直径的⊙O的切线,且⊙O与AC相交于点D,E为BC的中点,连接DE. (1)求证:DE是⊙O的切线; (2)连接AE,若∠C=45°,求sin∠CAE的值.
(宜宾)如图,AC=DC,BC=EC,∠ACD=∠BCE.求证:∠A=∠D.
(宜宾)如图,某市对位于笔直公路AC上两个小区A、B的供水路线进行优化改造.供水站M在笔直公路AD上,测得供水站M在小区A的南偏东60°方向,在小区B的西南方向,小区A、B之间的距离为米,求供水站M分别到小区A、B的距离.(结果可保留根号)
(遂宁)计算:.
(遂宁)如图,▱ABCD中,点E,F在对角线BD上,且BE=DF,求证: (1)AE=CF; (2)四边形AECF是平行四边形.