(本小题满分11分)已知关于x的函数y=m-x-(m-1).(1)m=__________时,y=m-x-(m-1)是一次函数;(2)求证:对任何实数m,y=m-x-(m-1)的图像与都有公共点;(3)若是关于的二次函数y=m-x-(m-1)的图像与x有两个不同的公共点A、B (点A在点B左边),图像顶点为C,且△ABC是等腰直角三角形,求m的值;(4)是否存在这样的点P,使得对任何实数m,y=m-x-(m-1)的图像都经过P点?若存在,求出所有P的坐标;若不存在,请说明理由.
如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).
已知直线y=﹣3x与双曲线y=交于点P (﹣1,n).(1)求m的值;(2)若点A (,),B(,)在双曲线y=上,且<<0,试比较,的大小.
某中学为了预测本校应届毕业女生“一分钟跳绳”项目考试情况,从九年级随机抽取部分女生进行该项目测试,并以测试数据为样本,绘制出如图10所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图.根据统计图提供的信息解答下列问题: (1)补全频数分布直方图,并指出这个样本数据的中位数落在第 小组; (2)若测试九年级女生“一分钟跳绳”次数不低于130次的成绩为优秀,本校九年级女生共有260人,请估计该校九年级女生“一分钟跳绳”成绩为优秀的人数; (3)如测试九年级女生“一分钟跳绳”次数不低于170次的成绩为满分,在这个样本中,从成绩为优秀的女生中任选一人,她的成绩为满分的概率是多少?
如图,AB,AC分别是半⊙O的直径和弦,OD⊥AC于点D,过点A作半⊙O的切线AP,AP与OD的延长线交于点P.连接PC并延长与AB的延长线交于点F.(1)求证:PC是半⊙O的切线;(2)若∠CAB=30°,AB=10,求线段BF的长.
如图,已知△ABC中AB=AC.(1)作图:在AC上有一点D,延长BD,并在BD的延长线上取点E,使AE=AB,连AE,作∠EAC的平分线AF,AF交DE于点F(用尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,连接CF,求证:∠E=∠ACF.