(本小题满分10分)选修4-1:几何证明选讲如图,已知是⊙的直径,是⊙的弦,的平分线交⊙于,过点作交的延长线于点,交于点.若.(Ⅰ)∥;(Ⅱ)求的值.
设:函数在内单调递减;:曲线与轴交于不同的两点. (1)若为真且为真,求的取值范围; (2)若与中一个为真一个为假,求的取值范围.
如图,某小区有一边长为2(单位:百米)的正方形地块OABC,其中OAE是一个游泳池,计划在地块OABC内修一条与池边AE相切的直路(宽度不计),切点为M,并把该地块分为两部分.现以点O为坐标原点,以线段OC所在直线为x轴,建立平面直角坐标系,若池边AE满足函数)的图象,且点M到边OA距离为. (1)当时,求直路所在的直线方程; (2)当t为何值时,地块OABC在直路不含泳池那侧的面积取到最大,最大值是多少?
已知函数 (1)求函数的单调区间; (2)若函数的图像与直线恰有两个交点,求的取值范围.
如图,在底面边长为1,侧棱长为2的正四棱柱中,P是侧棱上的一点,. (1)试确定m,使直线AP与平面BDD1B1所成角为60º; (2)在线段上是否存在一个定点,使得对任意的m,⊥AP,并证明你的结论.
记的展开式中,的系数为,的系数为,其中 (1)求(2)是否存在常数p,q(p<q),使,对,恒成立?证明你的结论.