如图,已知椭圆 C 1 的中心在圆点 O ,长轴左、右端点 M 、 N 在x轴上,椭圆 C 1 的短轴为 M N ,且 C 1 , C 2 的离心率都为 e ,直线 l ⊥ M N , l 与 C 1 交于两点,与 C 2 交于两点,这四点按纵坐标从大到小依次为 A 、 B 、 C 、 D .
(I)设 e = 1 2 ,求 | B C | 与 | A D | 的比值; (II)当 e 变化时,是否存在直线 l ,使得 B O / / A N ,并说明理由.
(本小题满分14分) 已知四棱锥,底面为矩形,侧棱,其中,为侧棱上的两个三等分点,如图所示. (Ⅰ)求证:; (Ⅱ)求异面直线与所成角的余弦值; (Ⅲ)求二面角的余弦值.
(本小题满分13分) 记等差数列的前n项和为,已知. (Ⅰ)求数列的通项公式; (Ⅱ)令,求数列的前n项和.
已知数列{}中,在直线y=x上,其中n=1,2,3…. (Ⅰ)令 (Ⅱ)求数列 (Ⅲ)设的前n项和,是否存在实数,使得数列为等差数列?若存在,试求出.若不存在,则说明理由。
(本小题满分14分) 已知长方形ABCD, AB=2,BC=1.以AB的中点为原点建立如图8所示的平面直角坐标系. (Ⅰ)求以A、B为焦点,且过C、D两点的椭圆的标准方程; (Ⅱ)过点P(0,2)的直线交(Ⅰ)中椭圆于M,N两点,是否存在直线,使得以弦MN为直径的圆恰好过原点?若存在,求出直线的方程;若不存在,说明理由.
(本小题满分14分) 某商店预备在一个月内分批购入每张价值为20元的书桌共36台,每批都购入x台(x是正整数),且每批均需付运费4元,储存购入的书桌一个月所付的保管费与每批购入书桌的总价值(不含运费)成正比,若每批购入4台,则该月需用去运费和保管费共52元,现在全月只有48元资金可以用于支付运费和保管费. (1)求该月需用去的运费和保管费的总费用; (2)能否恰当地安排每批进货的数量,使资金够用?写出你的结论,并说明理由.