为增强市民的节能环保意识,某市面向全市征召义务宣传志愿者,从符合条件的500名志愿者中随机抽取100名志愿者,其年龄频率分布直方图如图所示,其中年龄分组区间是:.(1)求图中的值并根据频率分布直方图估计这500名志愿者中年龄在岁的人数;(2)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取20名参加中心广场的宣传活动,再从这20名中采用简单随机抽样方法选取3名志愿者担任主要负责人,记这3名志愿者中“年龄低于35岁”的人数为,求的分布列及数学期望.
已知(Ⅰ)求函数的单调递增区间;(Ⅱ)设,且,求.
(本小题满分7分)选修4—5:不等式选讲 已知函数的最小值为3. (Ⅰ)求实数的取值范围; (Ⅱ)若,且 ,求证.
以平面直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线的参数方程是(为参数),圆的极坐标方程是.(Ⅰ)求直线的方程和圆的直角坐标方程;(Ⅱ)求直线被圆截得的弦长.
(本小题满分7分)选修4-2:矩阵与变换 已知二阶矩阵A满足: . (Ⅰ)求矩阵A; (Ⅱ)求矩阵A的特征值以及对应到一个特征向量;
(本小题13分)已知定义在的奇函数满足:①;②对任意均有;③对任意,均有.(Ⅰ)求的值;(Ⅱ)证明:在上为增函数;(Ⅲ)是否存在实数k,使得对任意的恒成立?若存在,求出的k范围;若不存在说明理由.