(本小题满分13分)从某企业生产的某种产品中抽取20件,测量这些产品的一项质量指标值,由测量得到如图的频率分布直方图,从左到右各组的频数依次记为,,,,.(1)求图中的值;(2)下图是统计图中各组频数的一个算法流程图,求输出的结果;(3)从质量指标值分布在、的产品中随机抽取2件产品,求所抽取两件产品的质量指标值之差大于10的概率.
B选修4-4:坐标系与参数方程(本小题满分10分) 在直角坐标系中,直线的参数方程为(为参数),若以直角坐标系的点为极点,为极轴,且长度单位相同,建立极坐标系,得曲线的极坐标方程为. (1)求直线的倾斜角; (2)若直线与曲线交于两点,求.
A选修4-2:矩阵与变换(本小题满分10分) 已知矩阵,向量.求向量,使得.
(本小题满分16分) 已知函数(其中为自然对数的底数),. (1)若,,求在上的最大值; (2)若时方程在上恰有两个相异实根,求的取值范围; (3)若,,求使的图象恒在图象上方的最大正整数. [注意:]
(本小题满分16分) 已知数列是各项均不为的等差数列,公差为,为其前项和,且满足,.数列满足,为数列的前n项和. (1)求数列的通项公式和数列的前n项和; (2)若对任意的,不等式恒成立,求实数的取值范围; (3)是否存在正整数,使得成等比数列?若存在,求出所有的值;若不存在,请说明理由.
(本小题满分16分) 已知椭圆的离心率为,一条准线. (1)求椭圆的方程; (2)设O为坐标原点,是上的点,为椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于两点. ①若,求圆的方程; ②若是l上的动点,求证点在定圆上,并求该定圆的方程.