今有甲、乙两个篮球队进行比赛,比赛采用7局4胜制.假设甲、乙两队在每场比赛中获胜的概率都是.并记需要比赛的场数为ξ.(Ⅰ)求ξ大于5的概率;(Ⅱ)求ξ的分布列与数学期望.
设函数.(1)当时,求函数的定义域;(2)若函数的定义域为,试求的取值范围.
已知曲线的极坐标方程是.以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是:求直线与曲线相交所成的弦的弦长.
如图,,,,四点在同一圆上,的延长线与的延长线交于点,且.(1)证明:;(2)延长到,延长到,使得,证明:,,,四点共圆.
已知函数,.(1)若函数在点处的切线方程为,求的值;(2)若函数有三个不同的极值点,求的值;(3)若存在实数,使对任意的,不等式恒成立,求正整数的最大值.
已知抛物线上点到焦点的距离为4.(1)求抛物线方程;(2)点为准线上任意一点,为抛物线上过焦点的任意一条弦(如图),设直线,,的斜率为,,,问是否存在实数,使得恒成立.若存在,请求出的值;若不存在,请说明理由.