对任意函数可按图示构造一个数列发生器,其工作原理如下:①输入数据,经数列发生器输出;②若,则数列发生器结束工作;若则将反馈回输入端,再输出,并依此规律继续下去,现定义。(1)若输入,则由数列发生器产生数列,请写出的所有项;(2)若要数列发生器产生一个无穷的常数列,试求输入的初始数据的值;(3)若输入时,产生的无穷数列,满足对任意正整数n均有,求的取值范围。
在中,已知,又的面积等于6.(Ⅰ)求的三边之长;(Ⅱ)设是(含边界)内一点,到三边的距离分别为,求的取值范围.
如图,已知四棱锥P-ABCD的底面为直角梯形,AD∥BC,∠BCD=900,PA=PB,PC=PD.(I) 试判断直线CD与平面PAD是否垂直,并简述理由;(II)求证:平面PAB⊥平面ABCD;(III)如果CD=AD+BC,二面角P-CB-A等于600,求二面角P-CD-A的大小.
甲有一只放有x个红球,y个黄球,z个白球的箱子,乙有一只放有3个红球,2个黄球,1个白球的箱子,(1)两个各自从自己的箱子中任取一球,规定:当两球同色时甲胜,异色时乙胜。若用x、y、z表示甲胜的概率;2)在(1)下又规定当甲取红、黄、白球而胜的得分分别为1、2、3分,否则得0分,求甲得分的期望的最大值及此时x、y、z的值。
已知函数.(1)求函数的定义域;(2)若函数在上单调递增,求的取值范围.
已知曲线上任意一点到直线的距离是它到点距离的倍;曲线是以原点为顶点,为焦点的抛物线.(Ⅰ)求,的方程;(Ⅱ)过作两条互相垂直的直线,其中与相交于点,与相交于点,求四边形面积的取值范围.