本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准如下:每车每次租若不超过两小时,则免费;超过两小时的部分为每小时2元(不足1小时的部分按1小时计算). 甲、乙独立来该租车点租车骑游,各租一车一次.设甲、乙不超过两小时还车的概率分别为;两小时以上且不超过三小时还车的概率分别为;两人租车时间都不会超过四小时.(Ⅰ)求出甲、乙所付租车费用相同的概率;(Ⅱ)设甲、乙两人所付的租车费用之和为随机变量,求的分布列与数学期望.
(本小题满分12分)已知命题: 表示焦点在轴上的椭圆,命题:表示双曲线.若和有且仅有一个正确,求的取值范围.
(本小题满分10分) 已知双曲线的一条渐近线方程是,它的一个焦点在抛物线的准线上,(1)求双曲线的焦点坐标;(2)求双曲线的标准方程.
已知函数f(x)=,其中a>0. (1)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程; (2)若在区间上,f(x)>0恒成立,求a的取值范围.
已知椭圆C的左、右焦点坐标分别是,,离心率是,直线y=t椭圆C交与不同的两点M,N,以线段MN为直径作圆P,圆心为P. (1)求椭圆C的方程; (2)若圆P与x轴相切,求圆心P的坐标;
已知函数在处取得极值。 (1)讨论和是函数的极大值还是极小值; (2)过点作曲线的切线,求此切线方程。