本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准如下:每车每次租若不超过两小时,则免费;超过两小时的部分为每小时2元(不足1小时的部分按1小时计算). 甲、乙独立来该租车点租车骑游,各租一车一次.设甲、乙不超过两小时还车的概率分别为;两小时以上且不超过三小时还车的概率分别为;两人租车时间都不会超过四小时.(Ⅰ)求出甲、乙所付租车费用相同的概率;(Ⅱ)设甲、乙两人所付的租车费用之和为随机变量,求的分布列与数学期望.
已知数列{an}的前n项和为Sn,且对任意n∈N*有an+Sn=n. (1)设bn=an-1,求证:数列{bn}是等比数列; (2)设c1=a1且cn=an-an-1 (n≥2),求{cn}的通项公式.
已知{an}为等比数列,a3=2,a2+a4=,求{an}的通项公式.
已知公差大于零的等差数列{an}的前n项和为Sn,且满足:a3·a4=117,a2+a5=22. (1)求通项an; (2)若数列{bn}满足bn=,是否存在非零实数c使得{bn}为等差数列?若存在,求出c的值;若不存在,请说明理由.
设Sn是等差数列{an}的前n项和,已知S3,S4的等比中项为S5; S3,S4的等差中项为1,求数列{an}的通项公式.
等差数列{an}的奇数项的和为216,偶数项的和为192,首项为1,项数为奇数,求此数列的末项和通项公式.