已知曲线系的方程为,试证明:坐标平面内任一点(,在中总存在一椭圆和一双曲线过该点.
如图所示,有一块半径为R的半圆形钢板,计划剪裁成等腰梯形ABCD的形状,它的下底AB是⊙O 的直径,且上底CD的端点在圆周上,写出梯形周长y关于腰长x的函数关系式,并求出它的定义域.
求函数f(x)=的定义域.
等腰梯形ABCD的两底分别为AD=2a,BC=a,∠BAD=45°,作直线MN⊥AD交AD于M,交折线ABCD于N,记AM=x,试将梯形ABCD位于直线MN左侧的面积y表示为x的函数,并写出函数的定义域.
求下列函数的定义域: (1)y=+(2x-3)0; (2)y=log(2x+1)(32-4x).
(1)已知f()=lgx,求f(x); (2)已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x); (3)已知f(x)满足2f(x)+f()=3x,求f(x).