设函数f(x)=x3-ax(a>0),g(x)=bx2+2b﹣1.(1)若曲线y=f(x)与y=g(x)在它们的交点(1,c)处有相同的切线,求实数a,b的值;(2)当b=时,若函数h(x)=f(x)+g(x)在区间(﹣2,0)内恰有两个零点,求实数a的取值范围;(3)当a=1,b=0时,求函数h(x)=f(x)+g(x)在区间[t,t+3]上的最小值.
已知函数在处取得极值. (Ⅰ)求的值; (Ⅱ)证明:当时,.
已知是抛物线上的点,是的焦点, 以为直径的圆与轴的另一个交点为. (Ⅰ)求与的方程; (Ⅱ)过点且斜率大于零的直线与抛物线交于两点,为坐标原点,的面积为,证明:直线与圆相切.
如图,在四棱锥中,为平行四边形,且,,为的中点,,. (Ⅰ)求证://; (Ⅱ)求三棱锥的高.
气象部门提供了某地今年六月份(30天)的日最高气温的统计表如下:
由于工作疏忽,统计表被墨水污染,和数据不清楚,但气象部门提供的资料显示,六月份的日最高气温不高于32℃的频率为0.9. (Ⅰ) 若把频率看作概率,求,的值; (Ⅱ) 把日最高气温高于32℃称为本地区的 “高温天气”,根据已知条件完成下面列联表,并据此你是否有95%的把握认为本地区的“高温天气”与西瓜“旺销”有关?说明理由.
附:
已知各项为正数的等差数列满足,,且(). (Ⅰ)求数列的通项公式; (Ⅱ)设,求数列的前n项和.