(本小题满分10分,几何证明选讲)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E.证明:AD·DE=2PB2.
设椭圆中心是坐标原点,长轴在轴上,离心率,已知点到这个椭圆上的点的最远距离是,求这个椭圆的方程,并椭圆上到点的距离等于的点的坐标。
设是椭圆的两个焦点,是椭圆上任意一点,求的最大值和最小值。
设是椭圆的一个焦点,是短轴,,求这个椭圆的离心率。
椭圆比椭圆焦点在轴上的椭圆更接近于圆,求的范围。
求椭圆的长轴长和短轴长、离心率、焦点和顶点坐标及准线方程。