(本小题满分12分)如图,在四棱锥中,平面,,四边形满足,且,点为中点,点为边上的动点,且.(1)求证:平面平面;(2)是否存在实数,使得二面角的余弦值为?若存在,试求出实数的值;若不存在,说明理由.
已知椭圆的中心在原点,焦点在轴上,离心率为,右焦点到右顶点的距离为. (1)求椭圆的标准方程; (2)是否存在与椭圆交于两点的直线:,使得成立?若存在,求出实数的取值范围,若不存在,请说明理由.
如图,是圆的直径,点在圆上,,交于点,平面,,,,. (1)证明:; (2)求三棱锥的体积.
从某学校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm和195m之间,将测量结果按如下方式分成八组:第一组,第二组,…,第八组,下图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为人. (1)求第七组的频率并估计该校800名男生中身高在cm以上(含cm)的人数; (2)从第六组和第八组的男生中随机抽取两名男生,记他们的身高分别为,事件,求.
已知数列的前项和为,. (1)证明:数列是等差数列,并求; (2)设,求证:.
4-5:不等式选讲(本小题满分10分) 已知函数. (1)若是定义域为的奇函数,试求实数的值; (2)在(1)的条件下,若函数有三个零点,试求实数的取值范围.