(本小题满分12分)如图,在四棱锥中,底面是正方形,底面,,点是的中点,且交于点.(Ⅰ)求证:平面平面;(Ⅱ)求二面角的余弦值.
已知的顶点,顶点在直线上; (Ⅰ).若求点的坐标; (Ⅱ).设,且,求角.
设函数,其中. (1)若,求在的最小值; (2)如果在定义域内既有极大值又有极小值,求实数的取值范围; (3)是否存在最小的正整数,使得当时,不等式恒成立.
在中,为线段上一点,且,线段. (1)求证:; (2)若,,试求线段的长.
已知函数的定义域为,且同时满足以下三个条件:①;②对任意的,都有;③当时总有. (1)试求的值; (2)求的最大值; (3)证明:当时,恒有.
某工厂某种产品的年固定成本为250万元,每生产千件,需另投入成本为(万元),当年产量不足80千件时,(万元).当年产量不小于80千件时,(万元).每件商品售价为500元.通过市场分析,该厂生产的商品能全部售完. (1)写出年利润(万元)关于年产量(千件)的函数解析式; (2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?