已知圆的圆心在直线上,且与轴交于两点,.(Ⅰ)求圆的方程;(Ⅱ)求过点的圆的切线方程;(Ⅲ)已知,点在圆上运动,求以,为一组邻边的平行四边形的另一个顶点轨迹方程.
如图,在正三棱柱中, 是的沿长线上一点,过三点的平面交于,交于 (Ⅰ)求证:∥平面; (Ⅱ)当平面平面时,求的值.
已知的三个内角A、B、C所对的边分别为,向量,且. Ⅰ)求角A的大小; Ⅱ)若,试判断取得最大值时形状
已知椭圆:的左焦点,若椭圆上存在一点,满足以椭圆短轴为直径的圆与线段相切于线段的中点. (Ⅰ)求椭圆的方程; (Ⅱ)已知两点及椭圆:,过点作斜率为的直线交椭圆于两点,设线段的中点为,连结,试问当为何值时,直线过椭圆的顶点? (Ⅲ) 过坐标原点的直线交椭圆:于、两点,其中在第一象限,过作轴的垂线,垂足为,连结并延长交椭圆于,求证:
已知函数. (Ⅰ)记,求的极小值; (Ⅱ)若函数的图象上存在互相垂直的两条切线,求实数的值及相应的切点坐标.
已知等差数列(N+)中,,,. (Ⅰ)求数列的通项公式; (Ⅱ)若将数列的项重新组合,得到新数列,具体方法如下: ,,,,…,依此类推, 第项由相应的中项的和组成,求数列的前项和