(本小题12分)如图,四面体ABCD中,O、E分别是BD、BC的中点,(I)求证:平面BCD;(II)求异面直线AB与CD所成角的大小;(III)求点E到平面ACD的距离。
如图A.B是单位圆O上的点,且点在第二象限. C是圆O与轴正半轴的交点,A点的坐标为,△为直角三角形.(1)求; (2)求的长度
如图,已知空间四边形中,,是的中点. 求证:(1)平面CDE; (2)平面平面. (3)若G为的重心,试在线段AE上确定一点F,使得GF//平面CDE.
设椭圆M:(a>b>0)的离心率为,长轴长为,设过右焦点F倾斜角为的直线交椭圆M于A,B两点。(Ⅰ)求椭圆M的方程;(Ⅱ)求证| AB | =;(Ⅲ)设过右焦点F且与直线AB垂直的直线交椭圆M于C,D,求|AB| + |CD|的最小值。
已知是公差为的等差数列,它的前项和为, 等比数列的前项和为,,,(1)求公差的值;(2)若对任意的,都有成立,求的取值范围(3)若,判别方程是否有解?说明理由
据行业协会预测:某公司以每吨10万元的价格销售某种化工产品,可售出该产品1000吨,若将该产品每吨的价格上涨,则销售量将减少,且该化工产品每吨的价格上涨幅度不超过,(其中为正常数)(1)当时,该产品每吨的价格上涨百分之几,可使销售的总金额最大?(2)如果涨价能使销售总金额比原销售总金额多,求的取值范围.