已知椭圆C:的离心率为,左、右焦点分别为,点G在椭圆C上,且,的面积为3.(1)求椭圆C的方程:(2)设椭圆的左、右顶点为A,B,过的直线与椭圆交于不同的两点M,N(不同于点A,B),探索直线AM,BN的交点能否在一条垂直于轴的定直线上,若能,求出这条定直线的方程;若不能,请说明理由。
(本小题满分12分) 某班50位学生期中考试数学成绩的频率分布直方图如图所示,成绩分组区间是:[40,50)、[50,60)、[60,70)、[70,80)、[80,90)、[90,100]. (Ⅰ)求图中 x的值; (Ⅱ)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的分布列和数学期望.
(本小题满分12分) 如图,直三棱柱ABC−A1B1C1中, AC= BC=AA1,D是棱AA1的中点,DC1⊥BD. (Ⅰ)证明:DC1⊥BC; (Ⅱ)求二面角A1−BD−C1的大小.
(本小题满分12分) 函数f(x)= sinωxcosωx+sin2ωx+,其图像相邻两条对称轴之间的距离为. (Ⅰ)求ω的值; (Ⅱ) 若A为△ABC的内角,且f=,求A的值.
为了了解某学校餐厅的饭菜质量问题,采用分层抽样的方法从高一、高二、高三三个年级中抽取6个班进行调查,已知高一、高二、高三年级分别有18、12、6个班. ①求从高一、高二、高三年级分别抽取的班级个数; ②若从抽取的6个班中随机抽取2个进行调查结果的对比,试列出所有可能的抽取结果,并且计算抽取的2个班中至少有1个来自高一年级的概率.
已知函数(). ①当时,求曲线在点处的切线方程; ②设是的两个极值点,是的一个零点.证明:存在实数,使得按某种顺序排列后构成等差数列,并求.