(本小题满分12分)已知函数,,且,.(Ⅰ)求函数的单调递增区间;(Ⅱ)若,,求的值.
如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB。 (1)求证:CE⊥平面PAD; (2)若PA=AB=1,AD=3,CD= ,∠CDA=45°,求四棱锥P-ABCD的体积
.已知等差数列满足:数列的前n项和为. (1)求及; (2)令,求数列的前n项和.
如图,在四棱锥中,,四边形为平行四边形,,, (1)若为中点,求证:∥平面 (2)求三棱锥的体积
已知函数 (1)若,且,求的值; (2)求函数的最小正周期及单调递增区间.
(Ⅰ)求直线:与两坐标轴所围成的三角形的内切圆的方程; (Ⅱ)若与(Ⅰ)中的圆相切的直线交轴轴于和两点,且. ①求证:圆与直线相切的条件为; ②求OAB面积的最小值及此时直线的方程.