已知函数(Ⅰ)判断f(x)在上的单调性,并证明你的结论;(Ⅱ)若集合A="{y" | y=f(x),},B=[0,1], 试判断A与B的关系;(Ⅲ)若存在实数a、b(a<b),使得集合{y | y=f(x),a≤x≤b}=[ma,mb],求非零实数m的取值范围.
已知等比数列{an}的前n项和Sn=2n-a,n∈N*.设公差不为零的等差数列{bn}满足:b1=a1+2,且b2+5,b4+5,b8+5成等比数列. (Ⅰ)求a的值及数列{bn}的通项公式; (Ⅱ)设数列{logan}的前n项和为Tn.求使Tn>bn的最小正整数n.
设△ABC的内角A,B,C的对边分别为a,b,c,(a+b+c)(a-b+c)=ac. (Ⅰ)求B; (Ⅱ)若sinAsinC=,求C.
函数,过曲线上的点的切线方程为. (1)若在时有极值,求的表达式; (2)在(1)的条件下,求在[-3,1]上的最大值; (3)若函数在区间[-2,1]上单调递增,求实数b的取值范围.
在中,内角的对边分别为.已知 . (1)求的值;(2) 若,求的面积.
已知函数(为自然对数的底) (1)求的最小值; (2)设不等式的解集为,且,求实数的取值范围.