(本小题满分14分)如图4,已知中,,,⊥平面,、分别是、的中点.(1)求证:平面⊥平面;(2)求四棱锥B-CDFE的体积V;(3)求平面与平面所成的锐二面角的余弦值.
如图,斜率为1的直线过抛物线y2=2px(p>0)的焦点,与抛物线交于两点A,B,M为抛物线弧AB上的动点.(1)若|AB|=8,求抛物线的方程;(2)求的最大值
如图所示,在直径为BC的半圆中,A是弧BC上一点,正方形PQRS内接于△ABC,若BC=a,∠ABC=θ,设△ABC的面积为Sl,正方形PQRS的面积为S2.(1)用a,θ表示S1和S2;(2)当a固定,θ变化时,求取得最小值时θ的值.
如图,在三棱柱ABC—A1B1C1中,AA1⊥面ABC,AC⊥BC,E、F分别在线段上,B1E=3EC1,AC=BC=CC1=4.(1)求证:BC⊥AC1;(2)试探究:在AC上是否存在点F,满足EF//平面A1ABB1,若存在,请指出点F的位置,并给出证明;若不存在,说明理由.
某食品厂对生产的某种食品按行业标准分成五个不同等级,等级系数X依次为A,B,C,D,E.现从该种食品中随机抽取20件样品进行检验,对其等级系数进行统计分析,得到频率分布表如下:(1)在所抽取的20件样品中,等级系数为D的恰有3件,等级系数为E的恰有2件,求a,b,c的值;(2)在(1)的条件下,将等级系数为D的3件样品记为x1,x2,x3,等级系数为E的2件样品记为y1,y2,现从x1,x2,x3,y1,y2这5件样品中一次性任取两件(假定每件样品被取出的可能性相同),试写出所有可能的结果,并求取出的两件样品是同一等级的概率.
已知等差数列{}的前n项和为Sn,公差d≠0,且S3=9,a1,a3,a7成等比数列.(1)求数列{}的通项公式;(2)设=,求数列{}的前n项和.