(本小题满分12分)下图是某市今年1月份前30天空气质量指数(AQI)的趋势图.(1)根据该图数据在答题卷中完成频率分布表,并在图中作出这些数据的频率分布直方图;(图中纵坐标1/300即,以此类推)(2)当空气质量指数(AQI)小于100时,表示空气质量优良.某人随机选择当月1日至10日中的某一天到达该市,并停留2天,设是此人停留期间空气质量优良的天数,求的数学期望.
如下图所示,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成的角为60°. (1)求证:AC⊥平面BDE; (2)求二面角F-BE-D的余弦值; (3)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.
如图,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点. (1)证明:B1C1⊥CE; (2)求二面角B1-CE-C1的正弦值; (3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.
如图,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点. (1)求异面直线A1B与C1D所成角的余弦值; (2)求平面ADC1与平面ABA1夹角的正弦值.
如图,在棱长为a的正方体ABCD-A1B1C1D1中,G为△BC1D的重心, (1)求证:A1、G、C三点共线; (2)求证:A1C⊥平面BC1D; (3)求点C到平面BC1D的距离.
如图所示,已知空间四边形ABCD的每条边和对角线长都等于1,点E、F、G分别是AB、AD、CD的中点,计算: (1)·; (2)·; (3)EG的长; (4)异面直线AG与CE所成角的余弦值.