(本小题满分13分)设函数,.(Ⅰ)当时,求函数的值域;(Ⅱ)已知函数的图象与直线有交点,求相邻两个交点间的最短距离.
设函数在,处取得极值,且.(Ⅰ)若,求的值,并求的单调区间;(Ⅱ)若,求的取值范围.
已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(1)求双曲线C的方程;(2)若直线与双曲线C恒有两个不同的交点A和B,且(其中O为原点). 求k的取值范围.
已知函数(m为常数,且m>0)有极大值9.(Ⅰ)求m的值;(Ⅱ)若斜率为-5的直线是曲线的切线,求此直线方程.
已知顶点在原点,焦点在轴上的抛物线被直线截得的弦长为,求抛物线的方程
求函数f(x)=-2的极值。