(本小题满分14分)已知函数处的切线l与直线垂直,函数(Ⅰ)求实数的值;(Ⅱ)若函数存在单调递减区间,求实数的取值范围;(Ⅲ)设是函数的两个极值点,若,求的最小值.
2008年中国北京奥运会吉祥物由5个“中国福娃”组成,分别叫贝贝、晶晶、欢欢、迎迎、妮妮.现有8个相同的盒子,每个盒子中放一只福娃,每种福娃的数量如下表:
从中随机地选取5只.(I)求选取的5只恰好组成完整“奥运吉祥物”的概率; (II)若完整地选取奥运会吉祥物记10分;若选出的5只中仅差一种记8分;差两种记6分;以此类推. 设ξ表示所得的分数,求ξ的分布列及数学期望.
已知定义在正实数集上的函数,,其中. 设两曲线,有公共点,且在该点处的切线相同.(I)用表示;(II)求证:().
已知向量 (Ⅰ)当时,求函数的值域;(Ⅱ)若的值.
已知集合A=,. (Ⅰ)当a=2时,求AB;(Ⅱ)求使BA的实数a的取值范围.
(本题满分12分)已知是定义域为[-3,3]的函数,并且设,,其中常数c为实数.(1)求和的定义域;(2)如果和两个函数的定义域的交集为非空集合,求c的取值范围;(3)当在其定义域内是奇函数,又是增函数时,求使的自变量的取值范围.