如图,四棱锥,底面是边长为2的菱形,,为侧棱的三等分点(靠近点),为的交点,且面,.(1)若在棱上存在一点,且,确定点的位置,并说明理由;(2)求点到平面的距离.
已知函数. (1)若,令函数,求函数在上的极大值、极小值; (2)若函数在上恒为单调递增函数,求实数的取值范围.
已知曲线的极坐标方程是ρ=2,以极点为原点,极轴为轴的正半轴建立平面直角坐标系 (1) 写出曲线的直角坐标方程; (2)若把上各点的坐标经过伸缩变换后得到曲线,求曲线上任意一点到两坐标轴距离之积的最大值.
设不等式的解集为 (1)求集合; (2)试比较
已知圆方程为 (1)求圆心轨迹的参数方程和普通方程; (2)点是(1)中曲线上的动点,求的取值范围.
已知复数在复平面内表示的点为A,实数m取什么值时, (1)复数z为实数? (2)复数z为纯虚数? (3)点A位于复平面的第三象限?