【原创】(本小题共13分)已知函数,,其中,为自然对数的底数.(Ⅰ)当时,求函数的极小值;(Ⅱ)对,是否存在,使得成立?若存在,求出的取值范围;若不存在,请说明理由.
(本小题13分)如图,分别过椭圆:左右焦点、的动直线相交于点,与椭圆分别交于不同四点,直线的斜率、、、满足.已知当轴重合时,,. (1)求椭圆的方程; (2)是否存在定点,使得为定值.若存在,求出点坐标并求出此定值,若不存在,说明理由.
(本小题12分)已知函数(均为正常数),设函数在处有极值. (1)若对任意的,不等式总成立,求实数的取值范围; (2)若函数在区间上单调递增,求实数的取值范围.
(本小题12分)设数列是等差数列,数列的前项和满足且 (Ⅰ)求数列和的通项公式: (Ⅱ)设为数列的前项和,求.
(本小题12分)(1)已知,且,求的值; (2)已知为第二象限角,且,求的值.
(本小题12分)已知集合. (1)能否相等?若能,求出实数的值;若不能,试说明理由; (2)若命题,命题,且是充分不必要条件,求实数的取值范围.