(本小题满分16分)在平面直角坐标系中,已知椭圆:的离心率,直线过椭圆的右焦点,且交椭圆于,两点.(1)求椭圆的标准方程; (2)过点作垂直于轴的直线,设直线与定直线交于点,试探索当变化时,直线是否过定点?
已知中,顶点,边上的中线所在直线的方程是,边上的高所在直线的方程是,求所在直线.
如图3,正方体中,分别为与的中点.(Ⅰ)求证:平面;(Ⅱ)求二面角的正切值.
一个多面体的直观图、正(主)视图、侧(左)视图如图1和图2所示,其中正(主)视图、侧(左)视图均为边长为的正方形.(Ⅰ)请在图2指定的位置画出多面体的俯视图;(Ⅱ)若多面体底面对角线AC、BD交于点O,E为线段AA1的中点,求证:OE∥平面A1C1C;(Ⅲ)求该多面体的表面积.
若三条直线,,能围成三角形,求m的取值范围.
(已知数列的首项(a是常数,且),(),数列的首项,().(1)证明:从第2项起是以2为公比的等比数列;(2)设为数列的前n项和,且是等比数列,求实数的值;(3)当a>0时,求数列的最小项.