(已知数列的首项(a是常数,且),(),数列的首项,().(1)证明:从第2项起是以2为公比的等比数列;(2)设为数列的前n项和,且是等比数列,求实数的值;(3)当a>0时,求数列的最小项.
已知设函数 (Ⅰ)当,求函数的值域;(Ⅱ)当时,若="8," 求函数的值;
已知函数.(1) 试判断函数在上单调性并证明你的结论;(2) 若恒成立, 求整数的最大值;(3) 求证:.
若椭圆C:的离心率e为, 且椭圆C的一个焦点与抛物线y2=-12x的焦点重合. (1) 求椭圆C的方程; (2) 设点M(2,0), 点Q是椭圆上一点, 当|MQ|最小时, 试求点Q的坐标; (3) 设P(m,0)为椭圆C长轴(含端点)上的一个动点, 过P点斜率为k的直线l交椭圆与 A,B两点, 若|PA|2+|PB|2的值仅依赖于k而与m无关, 求k的值.
如图, 平面平面, 是以为斜边的等腰直角三角形, 分别为, , 的中点, , .(1) 设是的中点, 证明:平面;(2) 证明:在内存在一点, 使平面, 并求点到, 的距离.
已知数列为等比数列, 其前项和为, 已知, 且对于任意的有, , 成等差;求数列的通项公式;