(本小题满分12分)(1)若x>0,求函数的最小值 (2)设0<x<1,求函数的最小值
在数列中,,并且对于任意n∈N*,都有.(1)证明数列为等差数列,并求的通项公式;(2)设数列的前n项和为,求使得的最小正整数.
已知矩形与正三角形所在的平面互相垂直, 、分别为棱、的中点,,,(1)证明:直线平面;(2)求二面角的大小.
已知向量.(1)当时,求的值;(2)设函数,已知在△ABC中,内角A、B、C的对边分别为,若,求 ()的取值范围.
已知直线过椭圆的右焦点F,抛物线:的焦点为椭圆的上顶点,且直线交椭圆于、两点,点、F、在直线上的射影依次为点、、.(1)求椭圆的方程;(2)若直线交y轴于点,且,当变化时,探求的值是否为定值?若是,求出的值,否则,说明理由;(3)连接、,试探索当变化时,直线与是否相交于定点?
已知函数.(1)求证函数在区间上存在唯一的极值点,并用二分法求函数取得极值时相应的近似值(误差不超过);(参考数据,,)(2)当时,若关于的不等式恒成立,试求实数的取值范围.