(本小题满分7分)选修4-4:坐标系与参数方程在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,已知点A的极坐标为(),直线的极坐标方程为,且点A在直线上.(Ⅰ)求的值及直线的直角坐标方程;(Ⅱ)圆C的参数方程为 (为参数),试判断直线与圆的位置关系.
抛物线在点,处的切线垂直相交于点,直线与椭圆相交于,两点. (1)求抛物线的焦点与椭圆的左焦点的距离; (2)设点到直线的距离为,试问:是否存在直线,使得,,成等比数列?若存在,求直线的方程;若不存在,请说明理由.
如图,平面平面,四边形为矩形,.为的中点,. (1)求证:; (2)若与平面所成的角为,求二面角的余弦值.
已知数列中,,. (1)求证:数列是等差数列,并求的通项公式; (2)设,,试比较与的大小.
△中,角,,所对的边分别为,,.若,. (1)求角的取值范围; (2)求的最小值.
如图,是⊙的直径,是⊙的切线,与的延长线交于点,为切点.若,,的平分线与和⊙分别交于点、,求的值.