已知关于的一元二次方程(1)求证:无论取什么实数值,该方程总有两个不相等的实数根;(2)当Rt△ABC的斜边,且两条直角边的长 b和c恰好是这个方程的两个根,求的值
如图,AB=AC=AD. (1)如果AD∥BC,那么∠C和∠D有怎样的数量关系?证明你的结论;. (2)如果∠C=2∠D,那么你能得到什么结论?证明你的结论.
如图,在梯形ABCD中,AB∥DC, DB平分∠ADC,过点A作AE∥BD,交CD的延长线于点E,且∠C=2∠E. (1)求证:梯形ABCD是等腰梯形. (2)若∠BDC=30°,AD=5,求CD的长.
已知,如图, BE、CF分别是△ABC的边AC、AB上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连结AD、AG.请你判断线段AD与AG有什么关系?并证明.
已知:AD既是△ABC的角平分线又是BC边上的中线,DE⊥AB于E,DF⊥AC于 F , 求证:BE=CF
如图:在△ABC中,AB=AC,点M、N在BC上,且AM=AN 。求证:MB=CN.