如图,梯形的顶点与顶点分别在平面的两侧,且梯形的两边与分别与交于两点;梯形的另两条边的延长线分别与交于两点,求证:四点共线.
(本小题满分12分)已知全集,,. (Ⅰ)求;(Ⅱ)求.
已知集合,其中,表示的所有不同值的个数. (1)已知集合,,分别求,; (2)求的最小值.
在平面直角坐标系中,抛物线C的顶点在原点,焦点F的坐标为(1,0)。 (1)求抛物线C的标准方程; (2)设M、N是抛物线C的准线上的两个动点,且它们的纵坐标之积为,直线MO、NO与抛物线的交点分别为点A、B,求证:动直线AB恒过一个定点。
已知圆的极坐标方程为: . ⑴将极坐标方程化为普通方程; ⑵若点P(x,y)在该圆上,求x+y的最大值和最小值.
已知矩阵A=,若矩阵A属于特征值6的一个特征向量为α1=,属于特征值1的一个特征向量为α2=.求矩阵A,并写出A的逆矩阵.