(本小题满分12分)已知双曲线的离心率为,右准线方程为(Ⅰ)求双曲线的方程;(Ⅱ)设直线是圆上动点处的切线,与双曲线交于不同的两点,证明的大小为定值.
设函数,其中向量,,.(1)求的最小正周期与单调递减区间;(2)在△中,、、分别是角、、的对边,已知,,△的面积为,求的值.
已知圆C:。(1)求m的取值范围。(2)当m=4时,若圆C与直线交于M,N两点,且,求的值。
(本小题满分14分)已知椭圆()的左、右顶点分别为,,且,为椭圆上异于,的点,和的斜率之积为.(1)求椭圆的标准方程;(2)设为椭圆中心,,是椭圆上异于顶点的两个动点,求面积的最大值.
(本小题满分14分)已知函数(1)当时,求函数的最值;(2)当时,过原点分别作曲线和的切线,已知两切线的斜率互为倒数,证明:
(本小题满分12分)如图,为圆O的直径,是圆上不同于,的动点,四边形为矩形,且,平面平面.(1)求证:平面.(2)当点在的什么位置时,四棱锥的体积为.