如图1,在▱ABCD中,∠BCD的平分线交直线AD于点F,∠BAD的平分线交DC延长线于E.(1)在图1中,证明AF=EC;(2)若∠BAD=90°,G为CF的中点(如图2),判断△BEG的形状,并证明.
如图,已知BC是⊙O的直径,AC切⊙O于点C,AB交⊙O于点D,E为AC的中点,连结DE. (1)若AD=DB,OC=5,求切线AC的长; (2)求证:ED是⊙O的切线.
如图,△ABC中,∠C=90°,BC=6 cm,AC=8 cm,点P从点A开始沿AC向点C以2厘米/秒的速度运动;与此同时,点Q从点C开始沿CB边向点B以1厘米/秒的速度运动;如果P、Q分别从A、C同时出发,当其中一点到达终点时,另一点也随之停止运动. (1)经过几秒,△CPQ的面积等于3cm2? (2)在整个运动过程中,是否存在某一时刻t,使PQ恰好平分△ABC的面积?若存在,求出运动时间t;若不存在,请说明理由.
如图,已知⊙O是△ABC的外接圆,AC是直径,∠A=30°,BC=2,点D是AB的中点,连接DO并延长交⊙O于点P,过点P作PF⊥AC于点F. (1)求劣弧PC的长;(结果保留π) (2)求阴影部分的面积.(结果保留π).
要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图. (1)已求得甲的平均成绩为8环,求乙的平均成绩; (2)观察图形,直接写出甲,乙这10次射击成绩的方差s甲2, s乙2哪个大; (3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选 参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选 参赛更合适.
某市为打造“绿色城市”,积极投入资金进行河道治污与园林绿化两项工程,已知2013年投资1000万元,预计2015年投资1210万元.若这两年内平均每年投资增长的百分率相同. (1)求平均每年投资增长的百分率; (2)按此增长率,计算2016年投资额能否达到1360万?