如图,扇形OAB的半径OA=3,圆心角∠AOB=90°,点C是上异于A、B的动点,过点C作CD⊥OA于点D,作CE⊥OB于点E,连接DE,点G、H在线段DE上,且DG=GH=HE(1)求证:四边形OGCH是平行四边形.(2)当点C在上运动时,在CD、CG、DG中,是否存在长度不变的线段?若存在,请求出该线段的长度.
如图,为的内接三角形,的角平分线交于点,过点作交的延长线于点.
(1)求证:为的切线;
(2)若,求的大小.
小明的爸爸买了一个密码旅行箱,密码由六位数字组成.现小明爸爸已将密码的前四位数字确定为小明的生日,后两位数字由小明自己确定.小明想把十位上的数字设置为奇数,个位上的数字设置为偶数,且两个数位上的数字之和为9.这两个数位上的数字他采用转转盘的方式来确定,于是,小明设计了如图所示的两个可以自由转动的转盘和(每个转盘被分成五个面积相等的扇形区域).使用的规则如下:
同时转动两个转盘,转盘均停正后,记下两个指针所指扇形区域上的数(如果指针指到分割线上,那么就取指针右边扇形区域上的数).若记下的两个数之和为9,则确定为密码中的数字;否则,按上述规则继续转动两个转盘,直到记下的两个数之和为9为止.请用列表法或画树状图的方法,求小明同时转动两个转盘一次,得到的两个数之和恰好为9的概率.
某樱桃种植户有20吨樱桃待售,现有两种销售方式:一是批发,二是零售.经过市场调查,这两种销售方式对这个种植户而言,每天的销量及每吨所获的利润如下表:
销售方式
每天销量(吨
每吨所获利润(元
批发
3
4000
零售
1
6000
假设该种植户售完20吨樱桃,共批发了吨,所获总利润为元.
(1)求出与之间的函数关系式;
(2)若受客观因素影响,这个种植户每天只能采用一种销售方式销售,且正好10天销售完所有樱桃,请计算该种植户所获总利润是多少元?
小军学校门前有座山,山顶上有一观景台,他很想知道这座山比他们学校的旗杆能高出多少米.于是,有一天,他和同学小亮带着测倾器和皮尺来到观景台进行测量.测量方案如下:如图,首先,小军站在观景台的点处,测得旗杆顶端点的俯角为,此时测得小军眼睛距点的距离为1.8米;然后,小军在点处蹲下,测得旗杆顶端点的俯角为,此时测得小军的眼睛距点的距离为1米.请根据以上所测得的数据,计算山比旗杆高出多少米(结果精确到1米)?
(参考数据:,,,,,
如图,在中,延长到点,延长到点,使,连接交边于点,交边于点.求证:.