在平面直角坐标系中,一次函数y=ax+b的图象过点B(﹣1,),与x轴交于点A(4,0),与y轴交于点C,与直线y=kx交于点P,且PO=PA,(1)求a+b的值.(2)求k的值.(3)D为PC上一点,DF⊥x轴于点F,交OP于点E,若DE=2EF,求D点坐标.
如图所示在中,是的延长线上一点,与交于点,. (1)求证:∽;(2)若面积为2,求的面积.
已知关于的一元二次方程的一根为2.(1)求关于的关系式;(2)试说明:关于的一元二次方程总有两个不相等的实数根.
“埃博拉”病毒是一种能引起人类和灵长类动物产生“出血热”的烈性传染病毒,传染性极强.一日本人在非洲旅游时不慎感染了“埃博拉”病毒,经过两轮传染后,共有64人受到感染.(1)问每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?
如图,为原点,、两点坐标分别为、.(1)以为位似中心在轴左侧将放大为原来的两倍,并画出图形;(2)分别写出,两点的对应点, 的坐标;(3)已知点为内部一点,且,点在内的对应点为,求的长;(4)若点为的内心,则 度.
如图,已知点A(3,0),以A为圆心作⊙A与Y轴切于原点,与x轴的另一个交点为B,过B作⊙A的切线l.(1)以直线l为对称轴的抛物线过点A及点C(0,9),求此抛物线的解析式;(2)抛物线与x轴的另一个交点为D,过D作⊙A的切线DE,E为切点,求DE的长;(3)点F是切线DE上的一个动点,当△BFD与△EAD相似时,求出BF的长 .