“埃博拉”病毒是一种能引起人类和灵长类动物产生“出血热”的烈性传染病毒,传染性极强.一日本人在非洲旅游时不慎感染了“埃博拉”病毒,经过两轮传染后,共有64人受到感染.(1)问每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?
如图,己知双曲线y=(x>0)与经过点A(1,0)、B(0,1)的直线交于P、Q两点,连结OP、OQ. (1)求△OPQ的面积. (2)试说明:△OAQ≌△OBP (3)若C是OA上不与O、A重合的任意一点,CA=a(0<a<1),CD⊥AB于D,DE⊥OB于E. ①a为何值时,CE=AC? ②线段OA上是否存在点C,使CE∥AB?若存在这样的点,请求出点C的坐标:若不存在,请说明理由.
如图,已知Rt△ABC中,∠ACB=90°,斜边AB=5,两直角边AC、BC的长是关于x的方程x2-(m+5)x+6m=0的两个实数根,求m的值及AC、BC的长(BC>AC)
如图,四边形ABCD是平行四边形,点F在BA的延长线上,连接CF交AD于点E. (1)求证:△CDE∽△FAE. (2)当E是AD的中点且BC=2CD时,求证:∠F=∠BCF.
在旧城改造中,要定向向右爆破拆除一烟囱AB(如图),在地面上事先划定以B为圆心,半径与AB相等的危险区,现在从距离B点左侧18米远的建筑物CD顶端C点测得A点仰角为45°,B点的俯角为30°,问:若离B点右侧30米远的保护文物建筑EF,在爆破拆除烟囱时是否有危险?(计算中保留根号)
小明和小丽在做游戏:有A、B两个不透明的布袋,A布袋中有四个除标号外完全相同的小球,小球上分别标有数字0,1,2,3,B布袋中有四个除标号外完全相同的小球,小球上分别标有数字1,2,3.先从A布袋中随机取出一个小球,用m表示取出的球上的标号,再从B布袋中随机取出一个小球,用n表示取出的球上的标号.规定当m+n为偶数时小明获胜,否则小丽获胜,请用树状图或列表法,求出小明获胜的概率,并说明这个游戏是否公平?