写出下列命题的条件和结论.(1)两条直线被第三条直线所截,同旁内角互补;(2)绝对值等于3的数是3;(3)如果∠DOE=2∠EOF,那么OF是∠DOE的平分线.
计算:.
如图①,在平面直角坐标系中,已知,,,四点,动点以每秒个单位长度的速度沿运动不与点、点重合),设运动时间为(秒.
(1)求经过、、三点的抛物线的解析式;
(2)点在(1)中的抛物线上,当为的中点时,若,求点的坐标;
(3)当在上运动时,如图②.过点作轴,垂足为,,垂足为.设矩形与重叠部分的面积为,求与的函数关系式,并求出的最大值;
(4)点为轴上一点,直线与直线交于点,与轴交于点.是否存在点,使得为等腰三角形?若存在,直接写出符合条件的所有点的坐标;若不存在,请说明理由.
某县积极响应市政府加大产业扶贫力度的号召,决定成立草莓产销合作社,负责扶贫对象户种植草莓的技术指导和统一销售,所获利润年底分红.经市场调研发现,草莓销售单价(万元)与产量(吨之间的关系如图所示.已知草莓的产销投入总成本(万元)与产量(吨之间满足.
(1)直接写出草莓销售单价(万元)与产量(吨之间的函数关系式;
(2)求该合作社所获利润(万元)与产量(吨之间的函数关系式;
(3)为提高农民种植草莓的积极性,合作社决定按0.3万元吨的标准奖励扶贫对象种植户,为确保合作社所获利润(万元)不低于55万元,产量至少要达到多少吨?
如图,在中,,以为直径的交于点,过点作的切线交于点,连接.
(1)求证:是等腰三角形;
(2)求证:.
如图,两座建筑物的水平距离为,从点测得点的俯角为,测得点的俯角为.求这两座建筑物,的高度.(结果保留小数点后一位,,.